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Adsorbing trees in two dimensions: A Monte Carlo study
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Branched polymers interacting with an impenetrable wall can be modeled by lattice trees confined to a half
space with a fugacityk conjugate to the number of visits the tree makes in the wall. We adapt a cut-and-paste
algorithm for lattice trees with an umbrella-style implementation to sample trees interacting with an impen-
etrable wall over a wide range of values fork. We report results about the thermodynamic and metric
properties of the trees, and estimate the location of the adsorption transitionkc

1 and crossover exponentf.
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I. INTRODUCTION

A polymer in dilute solution can adsorb onto a solid w
if the interaction between the polymer and molecules in
wall exceeds the conformational entropy associated with
polymer in bulk solution. This adsorption phenomenon i
phase transition, which is geometric in nature: The three
mensional extent of the polymer is reduced to a more or
two dimensional nature in the adsorbed phase.

In this paper, we reconsider a lattice tree model
branched polymer adsorption onto a solid wall in two dime
sions~2D!. The adsorption transitions in models of branch
polymers have been reviewed by De’Bell and Lookman@1#,
where the values of several critical exponents associated
the model were reported. Further work includes a trans
matrix study by de Queiroz@2# and exact~but not rigorous!
results in three dimensions by Janssen and Lyssy@3#. Earlier
Monte Carlo studies of a model of branched polymers n
a wall were done by Lam and Binder@4#. Our approach is
also a Monte Carlo simulation, but using a cut-and-pa
algorithm for lattice trees@5# on the square lattice. Our mo
tivation for the simulation is to find good numerical es
mates of both the critical point and the critical expone
associated with the adsorption transition. Of particu
importance is the crossover exponentf; a suggestion of
hyperuniversality@2# for branched polymer adsorption ind
cates thatf51/2, although the real test for this predictio
will only come with estimates off in higher dimensions.

A tree is called attached if it has at least one vertex witz
coordinate equal to21, 0, or 1. A tree confined to the ha
space z>0 is a positive tree. A common model for
branched polymer in the vicinity of a solid wall is a positiv
attached tree. A visit is a vertex in a lattice tree withz coor-
dinate equal to zero. The fundamental quantity in this mo
is tn

1(v), which is the number of positive attached trees w
n edges andv visits. Trees are weighted by the number
visits they have: a tree withv visits will have weightekv,
wherek is a fugacity conjugate tov. The partition function
for positive attached trees is

Zn
1~k!5 (

v>0
tn

1~v !ekv. ~1!
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The limiting free energy of this model is the thermodynam
limit of ln Zn

1(k) per edge; this is known to exist@6#, and is
defined by

F 1~k!5 lim
n→`

1
n

ln Zn
1~k! for all k,`. ~2!

Moreover,F 1(k) is a convex function, and is nondecrea
ing, continuous, and differentiable almost everywhere@6#. It
is also known that the limiting free energyF 1(k) is inde-
pendent ofk for all k<0 @F 1(k)5 ln l2 where l2 is the
growth constant of lattice trees in two dimensions#. If k
.0, then it has been shown that max$ln l2,k%<F 1(k)
< ln l2 1k for k.0. These bounds imply the existence of
nonanalyticity at a critical valuekc

1 in the free energy of
positive trees, and this corresponds to the adsorption tra
tion of a branched polymer on a solid wall. The critical val
of the fugacity may be defined by

kc
15sup$kuF 1~k!5 ln l2% ~3!

in two dimensions and it is known thatkc
1.0 @6#. The den-

sity of visits is defined bŷv/n&5(1/n)] ln Zn
1(k)/]k where

^v/n&→^V&5]F 1/]k as n→`. kc
1 is also that value of

the fugacity where the density of visitŝV& becomes non-
zero: ^V&50 if k,kc

1 and ^V&.0 if k.kc
1 . By the con-

vexity of the limiting free energy,̂ V&5]F 1(k)/]k, and
this exists for almost every value ofk.

An umbrella sampling implementation of the cut-an
paste algorithm was used over a wide range ofk. This type
of implementation was also used in the sampling of colla
ing trees in a self-interacting model of lattice trees@5#, and
similarly in the simulation of collapsing lattice animals@8#.
We shall collect thermodynamic data and metric data on
sorbing positive attached trees in this simulation in order
locate the adsorption transition at a critical value ofk(kc

1)
and to find numerical estimates of critical exponents ass
ated with the transition.

The metric exponentn describes scaling of quantities wit
dimensions of length, and, in particular, one would exp
that

^Rn~k!&;nn~k! ~4!
©2001 The American Physical Society01-1



te

ce
a

a

g
b
n

e
e

an
rly

in
oi

lin

ov

im

te

s
a

e

p
e
we

ms

-
ace
x-
ith
ges

of

d.
f

ing

t-
ing
y
e
g

t

se-

-

S. YOU AND E. J. JANSE van RENSBURG PHYSICAL REVIEW E64 046101
whereRn(k) is a metric quantity, and where we now no
that n may depend onk. It is known thatn(0)'0.64 in two
dimensions, and, in fact, one would expect thatn(k)'0.64
for all k,kc

1 in two dimensions. On the other hand, sin
the tree has a nonzero density of visits in the adsorbed ph
its span along the adsorbing wall will beO(n) in two dimen-
sions so thatn(k)51 if k.kc

1 in two dimensions.
The branch exponentr measures an intrinsic length in

model of lattice trees. It is defined by

^Pn~k!&;nr~k!, ~5!

wherePn(k) is the length of the longest path in a tree@7#. If
a lattice tree is cut into two subtrees by deleting an ed
then the smaller of the subtrees is called a branch. It is
lieved that the mean branch size scales with the exponer
as well: ^Bn(k)&;nr(k) @7#. The value ofr for trees in two
dimensions is estimated to be about 3/4, and one should
pect this value as well for positive trees in the desorb
phase,r(k)'3/4 if k,kc

1 . In the adsorbed phase the sp
of the tree along the adsorbing wall should grow linea
with the size of the tree, and so we expect here thatr(k)
51 if k.kc

1 .
Thermodynamic data are equally important in analyz

the properties of the adsorbing lattice tree. The starting p
is the finite size free energy per monomer:Fn

1(k)
5(1/n)ln Zn(k). The specific heat is defined byCn

1(k)
5d2Fn

1(k)/dk2 and this is equal to (^v2&2^v&2)/n. These
are analytic functions for finite values ofn, but asn→`,
Fn

1(k)→F 1(k), the limiting free energy, which we know
to be a nonanalytic function. The standard finite size sca
ansatz forFn

1(k) is @9,10#

Fn
1~k!;t22a f ~nt1/f! where t5~k2kc!/kc . ~6!

wheref is a crossover exponent that describes the cross
behavior ofFn

1(k) to F 1(k) as n→`. a is the specific
heat exponent, and it describes the nonanalyticity in the l
iting free energy. The functionf (x) is a universal scaling
function, andf (x)→const asx→`. The singular part of the
limiting free energy behaves asF 1(k);t22a. If we define
g(x)5xf(22a) f (x), then we obtain

Fn
1~k!;nf~22a!g~nft!, t>0. ~7!

Since we know thatFn
1(k)5(1/n)ln Zn

1(k), this shows that
22a51/f, the standard hyperscaling relation that rela
the specific heat exponent to the crossover exponent.

Since the singular part of the limiting free energy is a
sumed to behave ast22a, the specific heat should have
singularity of the form

C~k!;t2a, t>0. ~8!

It is known thatF 1(k)5 ln l2 if t,0 and soC(k)50 if
t,0. If n is finite, then we can compute from Eq.~7! that

Cn~k!;nfag9~nft!, t>0. ~9!
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If k,kc
1 , then Cn(k)→0 with increasingn, while, if k

.kc
1 ,Cn(k) should either diverge~if fa.0!, or approach

a limiting curve, such as a cusp~if fa50!. If it increases
with increasingn, then the curvesCn(k) should intersect at
the critical point, and this will give us one way of finding th
critical value ofk. In this model it is believed thatf51/2
~and thusa50! so that the specific heat will have a cus
singularity at the critical point. Numerically, this is mor
difficult to analyze than a divergent specific heat, and
shall rely on the intersections between the curvesCn(k) to
locate the critical point.

II. MARKOV CHAIN SAMPLING

The cut-and-paste algorithm for lattice trees perfor
poorly in the adsorbed phase of the lattice trees~that is, for
large values ofk!. Since it is a Metropolis algorithm, it op
erates by sampling along a Markov chain in the state sp
of positive trees. A typical simulation would have long e
cursions in some relatively small regions of state space, w
the result that there are systematic errors in the avera
computed by a simulation. This is refered to as aquasier-
godic problem, and in this case it is caused by the inability
the algorithm to make large changes to the tree~these would
break many visits, and so are unfavorable!. By lowering the
value of k in a simulation, this problem can be alleviate
One such technique~which effectively lowers the strength o
the interaction in the simulation! is called umbrella sampling
@11#, and this was also implemented in studies of collaps
trees@5#.

A Metropolis algorithm sampling from a canonical Bol
zmann distribution can be turned into an umbrella sampl
algorithm by simply replacing the Boltzmann distribution b
an arbitrary distributionp. Canonical averages can then b
obtained by relying on the following importance samplin
identity:

^Q~k!&5
(

j 51
tn
1

Q~ j !ev~ j !k

(
j 51
tn
1

ev~ j !k

5
(

j 51
tn
1

Q~ j !ev~ j !kp j /p j

(
j 51
tn
1

ev~ t !kp j /p j

5
^Qevk/p&p

^evk/p&p
, ~10!

whereQ( j ) is the value of the propertyQ for the j th tree,
v( j ) is the number of visits in thej th tree, and the subscrip
p denotes expectation with respect to the distributionp.

It is important to note that relation~10! is true for any
probability distributionp. Sampling fromp can be carried
out using a Metropolis rejection scheme with a suitable
lection of trial moves. If one choosesp to overlap the Bolt-
zmann distributions at those values ofk of interest to us, and
distributions at values ofk where the Markov chain is mo
1-2
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ADSORBING TREES IN TWO DIMENSIONS: A MONTE . . . PHYSICAL REVIEW E 64 046101
bile, then a more efficient sampling process is found, e
for those values ofk where Boltzmann sampling is difficult

There is no obvious criterion for the best choice of t
umbrella distributionp. An often used distribution is a linea
combination of the Boltzmann distributions of interest, w
a ‘‘flat histogram criterion’’@5#: each Boltzmann distribution
must make about the same contribution to the umbrella
tribution. The flatness criterion is implemented by repeat
simulations, using data from each simulation to improve
umbrella for the next until a histogram that is sufficiently fl
is obtained.

In our simulations we collected data primarily on th
number of visits (v), the mean square radius of gyratio
(Rn

2), the mean span (Sn), the mean end-to-end distance
the longest path (En), the mean longest path (Pn), and the
mean branch size (Bn). Runs were performed on trees
sizes fromn525 to 500 edges. The step size in Table I is t
number of attempted elementary moves between colle
data points. Increasing this reduces autocorrelations in
data stream. For larger trees very large step sizes were
essary to reduce autocorrelations~which were computed and
factored into the statistical analysis of our confidence in
vals!.

Our immediate motivations are to obtain high quality da
for the estimation of the crossover exponentf and the criti-
cal value ofk, kc

1 . Umbrellas were generated using hist
gram uniformization by repeated simulations as necess
The umbrellas were checked by performing Monte Ca
runs with Boltzmann distributions to compare the resu
with umbrella sampling results.

III. RESULTS

Our data show an increase in the mean square radiu
gyration ask increases. This effect is best illustrated by co
sidering ratios ofRn

2/n2n. In particular, ifRn
2(k) is the mean

square radius of gyration atk in trees withn edges, then we
should expect that

Rn
2~k!

n2n ;H const if k<kc
1

` if k.kc
1 as n→`

. ~11!

If we assume thatRn
2(k)/n2n decreases to a constant f

k<kc
1 , then these curves should intersect each other atkc

1 ,
when plotted againstk.

TABLE I. The number of data collected and their step sizes

n Number of data collected Step size

25 50 000 250
50 50 000 1 000
75 50 000 3 000

100 250 000 4 000
150 250 000 6 000
200 1 000 000 8 000
300 1 000 000 15 000
400 1 000 000 32 000
500 1 000 000 40 000
04610
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We plot the ratioRn
2/n2n againstk in Fig. 1. These curves

approach the value 0.125 ifk50, and, if we assume the
modelRn

25An2n(11bn2D), whereD50.65@12# is the first
or effective confluent correction, then a least squares fi
k50 gives n50.642560.0002 as the metric exponent fo
lattice trees.

The exponentn can also be obtained by analyzing da
obtained from the end-to-end distance of the longest p
En , and the mean spanSn of the tree. On the other hand, th
results from these analyses are conditioned on the assu
model. A different model may give a different best estima
for n. Should this be the case, then it may be assumed
this is indicative of a systematic error in the estimates of
exponentn. We therefore tried a different, but related, mod
to see the effect of the choice of model on the estimates
n. A two parameter linear model~where the confluent cor
rection is ignored! gave a slightly different estimate forn.
We take the absolute difference in two results from the t
models as a measure of the size of a possible system
error. Our estimates forn are listed in Table II.

The data collected for the mean pathPn and the mean
branch sizeBn were analyzed in a fashion similar ton above
and the results are listed in Table III. The results in Table
were all obtained by a least square analysis, all of them w

FIG. 1. The ratios of the mean square radius of gyration for tr
of sizen to n2n Rn

2/n2n, for n525 to 500.

TABLE II. Metric exponentn at k50.

Quantity
n with

D50.65
n with two-
parameter fit

Systematic
error

Rn
2 0.64 248~16! 0.6351~27! 0.0074

En 0.64 000~60! 0.6481~26! 0.0081
Sn 0.63 780~39! 0.6673~52! 0.0295
1-3
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S. YOU AND E. J. JANSE van RENSBURG PHYSICAL REVIEW E64 046101
a x2 statistic acceptable at the 95% level. We find our b
estimate by taking the average of these:

n50.64560.00760.020,

where we first state a 95% statistical confidence interval~we
take the largest such confidence interval in Table II, and t
round it up!, and then an estimated systematic error~which is
one-half the maximum difference between estimates in Ta
II !.

The best estimate forr can be similarly obtained. We
found

r50.73760.00260.007.

If we present these best estimates with error bars as the s
of statistical and systematic errors, then we have

n50.64560.030m, r50.73760.010.

They are remarkably close to the values for lattice trees
tained previously in 2D@12#, which aren50.64260.010 and
r50.73860.010.

From the points of intersection in Fig. 2, we can estim
the value ofkc

1 by drawing the smallest rectangle around t
points of intersection between the various curves. The an
sis for three other quantities~the end-to-end distance of th

FIG. 2. The ratios of the mean square radius of gyration for tr
of sizen to n2n, Rn

2/n2n, for n550 to 500 focused on the interse
tions of the curves.

TABLE III. Branch exponentr at k50.

Quantity
r with

D50.65
r with two-
parameter fit

Systematic
error

Bn 0.74 212~54! 0.7294~20! 0.0127
Pn 0.73 682~47! 0.73819~62! 0.0004
04610
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longest path in the treeEn , the mean branch sizeBn , and the
longest path in the treePn! follows the same general lines a
for the mean square radius of gyration (Rn

2). In other words,
we plotRn

2(k)/n2n, En /nn, Bn /nr, andPn /nr againstk, and
look for the intersections of the curves. Here we setn
50.642 andr50.738, which are the best estimates for t
free trees in two dimensions@12#. The error bars are obtaine
by taking one-half the maximum difference between the
tersections. We also tried to confirm these error bars by us
two other different approaches in determining them. In
first instance we took the average of the intersections w
discarding outlier points; this gives error bars of size 50%
100% of those stated in Table IV. In the second instance
looked at the envelope of the set of intersecting curves.
determined the critical point at its narrowest part~its waist!,
and a confidence interval by searching for that interval w
end points at values ofk where the envelope has increased
a size that is 1.5 times its narrowest size. This method g
error bars of size 20% to 30% of those in Table IV. T
consistency in the outcome of these three methods supp
the estimates made in Table IV, and may even indicate
our stated error bars are somewhat conservative. The m
spanSn does not show clear intersections of the curves an

s

FIG. 3. Specific heat for trees ofn525 to n5500.

TABLE IV. Estimates ofkc
1 from the ratios of the listed quan

tities tonn or nr, wherenmin is the size of the smallest tree include
in the analysis.

Quantity nmin kc
1

Rn
2 50 0.821~17!

En 75 0.807~15!

Bn 50 0.821~28!

Pn 75 0.779~28!
1-4
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ADSORBING TREES IN TWO DIMENSIONS: A MONTE . . . PHYSICAL REVIEW E 64 046101
excluded for this estimate. The average value ofkc
1 obtained

from Table IV is then

kc
150.8160.03, ~12!

where the error bar is one-half the absolute difference
tween the smallest and largest estimate, rounded up.

FIG. 4. Specific heat for trees fromn5100 ton5400 focused
on the intersections of the curves.

FIG. 5. Log-log plots of the average energy per edge,^v&/n, vs
tree sizen for different values ofk. Approximate straight lines are
observed at 0.811<k<0.839 ~solid lines!, which are compared
with other plots with different values ofk ~3, k50.699; n, k
50.759; * , k50.869, ands,k50.919!. As we increasek, the
slopes of the lines increase.
04610
e-

The specific heat data obtained in our simulations w
similarly analyzed~see Figs. 3 and 4!. It appears again tha
the critical value ofk can be obtained by looking at interse
tions between curves, and our analysis gives

kc
150.81160.010. ~13!

We omitted the results for the first three small trees~n
525, 50, and 75! due to strong correction to scaling effect
and we have also omitted the results for the largest tree s
the data atn5500 are so close to the data obtained fromn
5400 that we could not determine an intersection betw
their curves accurately.

The critical values ofkc
1 can also be determined from th

expected behavior of the energy^v& at kc
1 . From Eq.~7!, we

have

]Fn
1

]t
;nf2f~22a!g8~nft!;nf21,

sincef(22a)51 by the hyperscaling relation. Thus,

FIG. 6. Plots of energy ratios loge(^v2n&/^vn&)/loge(2) againstk
for n575, 100, 150, and 200. The intersection point defines b
critical valuekc

1 and the crossover exponentf.

TABLE V. Estimates off from ln(̂ v&/n) plotted against ln(n)
with several values ofk.

k f

0.811 0.4703~70!

0.815 0.4784~65!

0.821 0.4901~63!

0.825 0.4979~69!

0.831 0.5098~82!

0.835 0.5178~97!

0.839 0.526~11!
1-5
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n
]Fn

1

]t
5^v&;nf,

wheref is a crossover exponent. Fork.kc
1 , the energy of

a very big tree becomes extensive (;n), while in the region
for k,kc

1^v& is constant, i.e., it does not increase with i
creasingn. Therefore, a log-log plot of the results for^v&/n
versusn for different values ofk will be a straight line atkc

1

with a negative slope equal tof21 ~Fig. 5!. Approximate
straight lines occur in the range 0.811<k<0.839~Table V!.
The value off estimated from the center solid line in Fig.
is

f50.5060.03, ~14!

where the error bar is one-half the difference between
largest and smallest estimates.

As a last check on the results above we also foundkc
1 and

f as follows. Atkc
1 one expects~if corrections to scaling are

ignored! ^v2n&/^vn&52f, which is a constant. These ratio
for n575, 100, 150, and 200 can be plotted as a function

FIG. 7. Plots of energy ratios loge(^v2n&/^vn&)/loge(2) againstk
for n575, 100, 150, and 200 focused on intersection points.

TABLE VI. Estimate ofkc
1 andf from the individual intersec-

tions among the curves of ln(^v2n&/^vn&)/ln 2 versus ln(n). The inter-
section between the ratios forn5150 and 200 is excluded for thi
analysis.

kc
1 f

0.873 0.592
0.845 0.545
0.833 0.524
0.827 0.498
0.819 0.483
04610
e

f

k, where the intersection point of the lines~at which the
above energy ratios become constant! defines bothkc

1 andf
~see Fig. 6!. The results forn525 and 50 are omitted due t
strong correction to scaling effects. In Fig. 7, the inters
tions of these lines are focused, and all possible individ
intersections among four lines~except those betweenn
5150 and 200 since they show many intersections in a w
range ofk! are considered separately to find each locat
kc

1 and the value of the ratio at this location,f ~Table VI!.
The first estimate ofkc

150.873 is outside the error bars ob
tained in Eqs.~12! and~13!, and we ignore it in our analysis

FIG. 8. R2n
2 (k)/n2n againstnft with k50.81 andf50.50.

FIG. 9. En(k)/nn againstnft with k50.81 andf50.50.
1-6
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The remaining data points are consistent with our other e
mates. If these are averaged, and errors bars are comput
taking one-half the distance between the largest and sma
then kc

150.8360.02 andf50.5160.04, not inconsisten
with the previously obtained results.

The scaling assumption for the mean square radius of
ration isRn

2(k);n2nh1(nft) whereh1(x) is a suitable scal-
ing function. It is not unreasonable to expect that a plot
Rn

2(k) againstnft will reveal the shape of the scaling func
tion. If the ratiosR2n

2 (k)/n2n are taken, then

R2n
2 ~k!

n2n ;h1~nft!. ~15!

FIG. 10. Sn(k)/nn againstnft with k50.81 andf50.50.

FIG. 11. Bn(k)/nr againstnft with k50.81 andf50.50.
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ti-
by

st,

y-

f

Since this ratio is independent ofn, one can use this as an
other check on the estimates off andkc

1 . We plot it with
various values off andkc

1 until the data collapse to a singl
curve. Our attempts with the best estimatesf50.50 and
kc

150.81 are illustrated in Figs. 8–12.
We next analyze the metric data to estimate the expon

n andr as functions ofk ~see Figs. 13–15!. These exponents
should change abruptly aroundkc

1 , and indicate that the
thermodynamic phase transition is accompanied by a tra
tion in metric properties consistent with adsorption. The v
ues ofn andr in the phase with largek are consistent with it
being a primarily linear object extending along the adsorb
line.

FIG. 12. Pn(k)/nr againstnft with k50.81 andf50.50.

FIG. 13. The metric exponentn estimated fromRn
2(k) againstk.
1-7
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IV. CONCLUSION

We have performed extensive simulations of lattice tr
interacting with a solid wall in two dimensions. The cut-an
paste algorithm for trees has been adapted via umbrella s
pling to deal with quasiergodic problems, and it successfu
sampled trees over a wide range of values ofk.

The crossover exponent and critical value ofk have been
computed in several ways. All our results agree within th
error bars. Our best estimates forf andkc

1 are found from
Eqs.~14!, ~12!, and~13!. These are

f50.5060.03, kc
150.8160.03

for adsorbing lattice trees. From an exact study of the Is
model in an imaginary field ind51, the resultf50.5 is
obtained for lattice tree adsorption ind53 @3,13#. In two
dimensions the crossover exponent for adsorbing branc
polymers is thought to be equal to 1/2, consistent with
result above. An approach using the transfer matrix gives

FIG. 14. The metric exponentn estimated fromEn(k) againstk.
i,

04610
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estimatef50.50560.015 ~de Queiroz@2#!. These results
are consistent with the notion of hyperuniversality in adso
ing branched polymers@3#; that is,f51/2 in every dimen-
sion for adsorbing branched polymers.

It is also the case that values close to 1/2 have been
tained for the crossover exponent of adsorbing linear po
mers. Numerical data in three dimensions suggest thaf
'1/2 @14#, while renormalization group calculations and s
ries estimates gave larger values forf @15,16#. In two dimen-
sions the result thatf51/2 has been obtained using a varie
of techniques@17–19#; see also@20# and @21# for more de-
tails.
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FIG. 15. The branch exponentr estimated fromBn(k) against
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